Explaining Transmission Rate Variations and Forecasting Epidemic Spread in Multiple Regions with a Semiparametric Mixed Effects SIR Model

Author:

Buch David A.1ORCID,Johndrow James E.2,Dunson David B.1

Affiliation:

1. Department of Statistical Science, Duke University , Durham, North Carolina , USA

2. Department of Statistics, The Wharton School of the University of Pennsylvania , Philadelphia, Pennsylvania , USA

Abstract

Abstract The transmission rate is a central parameter in mathematical models of infectious disease. Its pivotal role in outbreak dynamics makes estimating the current transmission rate and uncovering its dependence on relevant covariates a core challenge in epidemiological research as well as public health policy evaluation. Here, we develop a method for flexibly inferring a time-varying transmission rate parameter, modeled as a function of covariates and a smooth Gaussian process (GP). The transmission rate model is further embedded in a hierarchy to allow information borrowing across parallel streams of regional incidence data. Crucially, the method makes use of optional vaccination data as a first step toward modeling of endemic infectious diseases. Computational techniques borrowed from the Bayesian spatial analysis literature enable fast and reliable posterior computation. Simulation studies reveal that the method recovers true covariate effects at nominal coverage levels. We analyze data from the COVID-19 pandemic and validate forecast intervals on held-out data. User-friendly software is provided to enable practitioners to easily deploy the method in public health research.

Funder

National Institute of Environmental Health Sciences

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,Statistics and Probability

Reference47 articles.

1. Efficient Gaussian process regression for large datasets;Banerjee;Biometrika,2013

2. Stan: a probabilistic programming language;Carpenter;Journal of Statistical Software,2017

3. Robust Markov chain Monte Carlo methods for spatial generalized linear mixed models;Christensen;Journal of Computational and Graphical Statistics,2006

4. A new framework and software to estimate time-varying reproduction numbers during epidemics;Cori;American Journal of Epidemiology,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3