Efficient Algorithms for Building Representative Matched Pairs with Enhanced Generalizability

Author:

Zhang Bo1ORCID

Affiliation:

1. Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center , Seattle, Washington , USA

Abstract

Abstract Many recent efforts center on assessing the ability of real-world evidence (RWE) generated from non-randomized, observational data to produce results compatible with those from randomized controlled trials (RCTs). One noticeable endeavor is the RCT DUPLICATE initiative. To better reconcile findings from an observational study and an RCT, or two observational studies based on different databases, it is desirable to eliminate differences between study populations. We outline an efficient, network-flow-based statistical matching algorithm that designs well-matched pairs from observational data that resemble the covariate distributions of a target population, for instance, the target-RCT-eligible population in the RCT DUPLICATE initiative studies or a generic population of scientific interest. We demonstrate the usefulness of the method by revisiting the inconsistency regarding a cardioprotective effect of the hormone replacement therapy (HRT) in the Women's Health Initiative (WHI) clinical trial and corresponding observational study. We found that the discrepancy between the trial and observational study persisted in a design that adjusted for the difference in study populations' cardiovascular risk profile, but seemed to disappear in a study design that further adjusted for the difference in HRT initiation age and previous estrogen-plus-progestin use. The proposed method is integrated into the R package match2C.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3