A Self-Censoring Model for Multivariate Nonignorable Nonmonotone Missing Data

Author:

Li Yilin1ORCID,Miao Wang1,Shpitser Ilya2,Tchetgen Tchetgen Eric J.3

Affiliation:

1. Department of Probability and Statistics, Peking University , Beijing , China

2. Department of Computer Science, Johns Hopkins University , Baltimore , USA

3. Department of Statistics, The Wharton School of the University of Pennsylvania , Philadelphia, Pennsylvania , USA

Abstract

Abstract We introduce an itemwise modeling approach called “self-censoring” for multivariate nonignorable nonmonotone missing data, where the missingness process of each outcome can be affected by its own value and associated with missingness indicators of other outcomes, while conditionally independent of the other outcomes. The self-censoring model complements previous graphical approaches for the analysis of multivariate nonignorable missing data. It is identified under a completeness condition stating that any variability in one outcome can be captured by variability in the other outcomes among complete cases. For estimation, we propose a suite of semiparametric estimators including doubly robust estimators that deliver valid inferences under partial misspecification of the full-data distribution. We also provide a novel and flexible global sensitivity analysis procedure anchored at the self-censoring. We evaluate the performance of the proposed methods with simulations and apply them to analyze a study about the effect of highly active antiretroviral therapy on preterm delivery of HIV-positive mothers.

Funder

National Key R&D Program

National Natural Science Foundation of China

Beijing Natural Science Foundation

ONR

National Science Foundation

NIH

Natural Science Foundation of Beijing Municipality

Office of Naval Research

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,Statistics and Probability

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3