How to Analyze Continuous and Discrete Repeated Measures in Small-Sample Cross-Over Trials?

Author:

Verbeeck Johan1ORCID,Geroldinger Martin23,Thiel Konstantin23,Hooker Andrew Craig4ORCID,Ueckert Sebastian4,Karlsson Mats4,Bathke Arne Cornelius5,Bauer Johann Wolfgang6,Molenberghs Geert17,Zimmermann Georg23

Affiliation:

1. Data Science Institute (DSI), Interuniversity Institute for Biostatistics and statistical Bioinformatics (I-BioStat), Hasselt University , Hasselt , Belgium

2. Team Biostatistics and Big Medical Data, Intelligent Data Analytics (IDA) Lab Salzburg, Paracelsus Medical University , Salzburg , Austria

3. Research and Innovation Management, Paracelsus Medical University Salzburg , Salzburg , Austria

4. Department of Pharmacy, Uppsala University , Uppsala , Sweden

5. Intelligent Data Analytics (IDA) Lab Salzburg, Department of Artificial Intelligence and Human Interfaces, University of Salzburg , Salzburg , Austria

6. Department of Dermatology and Allergology, Paracelsus Medical University , Salzburg , Austria

7. Interuniversity Institute for Biostatistics and statistical Bioinformatics (I-BioStat), KULeuven , Leuven , Belgium

Abstract

Abstract To optimize the use of data from a small number of subjects in rare disease trials, an at first sight advantageous design is the repeated measures cross-over design. However, it is unclear how these within-treatment period and within-subject clustered data are best analyzed in small-sample trials. In a real-data simulation study based upon a recent epidermolysis bullosa simplex trial using this design, we compare non-parametric marginal models, generalized pairwise comparison models, GEE-type models and parametric model averaging for both repeated binary and count data. The recommendation of which methodology to use in rare disease trials with a repeated measures cross-over design depends on the type of outcome and the number of time points the treatment has an effect on. The non-parametric marginal model testing the treatment–time-interaction effect is suitable for detecting between group differences in the shapes of the longitudinal profiles. For binary outcomes with the treatment effect on a single time point, the parametric model averaging method is recommended, while in the other cases the unmatched generalized pairwise comparison methodology is recommended. Both provide an easily interpretable effect size measure, and do not require exclusion of periods or subjects due to incompleteness.

Funder

WISS 2025 project 'IDA-Lab Salzburg'

European Joint Programme on Rare Diseases (EJP RD), EU Horizon 2020

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,Statistics and Probability

Reference34 articles.

1. Exact permutation and bootstrap distribution of generalized pairwise comparisons statistics;Anderson;Mathematics,2023

2. Model selection and averaging of nonlinear mixed-effect models for robust phase III dose selection;Aoki;Journal of Pharmacokinetics and Pharmacodynamics,2017

3. Pseudolikelihood estimation: some examples;Arnold;Sankhya: the Indian Journal of Statistics-Series B,1991

4. Significance tests for 2 2 tables;Barnard;Biometrika,1947

5. Properties of sufficiency and statistical tests;Bartlett;Proceedings of the Royal Society A,1937

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3