Bayesian Causal Inference for Observational Studies with Missingness in Covariates and Outcomes

Author:

Zang Huaiyu1ORCID,Kim Hang J.2ORCID,Huang Bin34,Szczesniak Rhonda34ORCID

Affiliation:

1. Heart Institute, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio , USA

2. Division of Statistics and Data Science, University of Cincinnati , Cincinnati, Ohio , USA

3. Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio , USA

4. Department of Pediatrics, University of Cincinnati , Cincinnati, Ohio , USA

Abstract

Abstract Missing data are a pervasive issue in observational studies using electronic health records or patient registries. It presents unique challenges for statistical inference, especially causal inference. Inappropriately handling missing data in causal inference could potentially bias causal estimation. Besides missing data problems, observational health data structures typically have mixed-type variables - continuous and categorical covariates - whose joint distribution is often too complex to be modeled by simple parametric models. The existence of missing values in covariates and outcomes makes the causal inference even more challenging, while most standard causal inference approaches assume fully observed data or start their works after imputing missing values in a separate preprocessing stage. To address these problems, we introduce a Bayesian nonparametric causal model to estimate causal effects with missing data. The proposed approach can simultaneously impute missing values, account for multiple outcomes, and estimate causal effects under the potential outcomes framework. We provide three simulation studies to show the performance of our proposed method under complicated data settings whose features are similar to our case studies. For example, Simulation Study 3 assumes the case where missing values exist in both outcomes and covariates. Two case studies were conducted applying our method to evaluate the comparative effectiveness of treatments for chronic disease management in juvenile idiopathic arthritis and cystic fibrosis.

Funder

National Heart, Lung, and Blood Institute

Cystic Fibrosis Foundation

National Center for Advancing Translational Sciences

Patient-Centered Outcomes Research Institute

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3