Optimizing Treatment Allocation in Randomized Clinical Trials by Leveraging Baseline Covariates

Author:

Zhang Wei1ORCID,Zhang Zhiwei2ORCID,Liu Aiyi3ORCID

Affiliation:

1. Academy of Mathematics and Systems Science, Chinese Academy of Sciences , Beijing , China

2. Biostatistics Innovation Group, Gilead Sciences , Foster City, California , USA

3. Biostatistics and Bioinformatics Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health , Bethesda, Maryland , USA

Abstract

Abstract We consider the problem of optimizing treatment allocation for statistical efficiency in randomized clinical trials. Optimal allocation has been studied previously for simple treatment effect estimators such as the sample mean difference, which are not fully efficient in the presence of baseline covariates. More efficient estimators can be obtained by incorporating covariate information, and modern machine learning methods make it increasingly feasible to approach full efficiency. Accordingly, we derive the optimal allocation ratio by maximizing the design efficiency of a randomized trial, assuming that an efficient estimator will be used for analysis. We then expand the scope of optimization by considering covariate-dependent randomization (CDR), which has some flavor of an observational study but provides the same level of scientific rigor as a standard randomized trial. We describe treatment effect estimators that are consistent, asymptotically normal, and (nearly) efficient under CDR, and derive the optimal propensity score by maximizing the design efficiency of a CDR trial (under the assumption that an efficient estimator will be used for analysis). Our optimality results translate into optimal designs that improve upon standard practice. Real-world examples and simulation results demonstrate that the proposed designs can produce substantial efficiency improvements in realistic settings.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3