The amino acid and polycyclic aromatic hydrocarbon compositions of the promptly recovered CM2 Winchcombe carbonaceous chondrite

Author:

Chan Queenie H. S.123ORCID,Watson Jonathan S.4ORCID,Sephton Mark A.4ORCID,O'Brien Áine C.356ORCID,Hallis Lydia J.5ORCID

Affiliation:

1. Royal Holloway University of London Surrey TW20 0EX UK

2. The Open University Walton Hall Milton Keynes MK7 6AA UK

3. UK Fireball Network (UKFN) UK

4. Department of Earth Science and Engineering Imperial College London London SW7 2BX UK

5. School of Geographical and Earth Sciences University of Glasgow Glasgow G12 8QQ UK

6. UK Fireball Alliance (UKFAll) UK

Abstract

AbstractThe rapid recovery of the Winchcombe meteorite offers a valuable opportunity to study the soluble organic matter (SOM) profile in pristine carbonaceous astromaterials. Our interests in the biologically relevant molecules, amino acids—monomers of protein, and the most prevalent meteoritic organics—polycyclic aromatic hydrocarbons (PAHs) are addressed by analyzing the solvent extracts of a Winchcombe meteorite stone using gas chromatography mass spectrometry. The Winchcombe sample contains an amino acid abundance of ~1132 parts‐per‐billion that is about 10 times lower than other CM2 meteorites. The detection of terrestrially rare amino acids, including α‐aminoisobutyric acid (AIB); isovaline; β‐alanine; α‐, β‐, and γ‐amino‐n‐butyric acids; and 5‐aminopentanoic acid, and the racemic enantiomeric ratios (D/L = 1) observed for alanine and isovaline indicate that these amino acids are indigenous to the meteorite and not terrestrial contaminants. The presence of predominantly α‐AIB and isovaline is consistent with their formation via the Strecker‐cyanohydrin synthetic pathway. The L‐enantiomeric excesses in isovaline previously observed for aqueously altered meteorites were viewed as an indicator of parent body aqueous processing; thus, the racemic ratio of isovaline observed for Winchcombe, alongside the overall high free:total amino acid ratio, and the low amino acid concentration suggest that the analyzed stone is derived from a lithology that has experienced brief episode(s) of aqueous alteration. Winchcombe also contains 2‐ to 6‐ring alkylated and nonalkylated PAHs. The low total PAHs abundance (6177 ppb) and high nonalkylated:alkylated ratio are distinct from that observed for heavily aqueously altered CMs. The weak petrographic properties of Winchcombe, as well as the discrepancies observed for the Winchcombe SOM content—a low total amino acid abundance comparable to heavily altered CMs, and yet the high free:total amino acid and nonalkylated:alkylated PAH ratios are on par with the less altered CMs—suggest that Winchcombe could represent a class of weak, poorly lithified meteorite not been previously studied.

Funder

Science and Technology Facilities Council

Publisher

Wiley

Subject

Space and Planetary Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3