Extended time scales of carbonaceous chondrite aqueous alteration evidenced by a xenolith in LaPaz Icefield 02239 (CM2)

Author:

Lee Martin R.1ORCID,Floyd Cameron1,Martin Pierre‐Etienne1,Zhao Xuchao2ORCID,Franchi Ian A.2ORCID,Jenkins Laura1,Griffin Sammy1ORCID

Affiliation:

1. School of Geographical and Earth Sciences University of Glasgow Glasgow G12 8QQ UK

2. School of Physical Sciences Open University Milton Keynes MK7 6AA UK

Abstract

AbstractLaPaz Icefield (LAP) 02239 is a mildly aqueously altered CM2 carbonaceous chondrite that hosts a xenolith from a primitive chondritic parent body. The xenolith contains chondrules and calcium‐ and aluminum‐rich inclusions (CAIs) in a very fine‐grained matrix. The chondrules are comparable in mineralogy and oxygen isotopic composition with those in the CMs, and its CAIs are also mineralogically similar to the CM population apart for being unusually small and abundant. The presence of serpentine demonstrates that the xenolith has been aqueously altered, and its phyllosilicate‐rich matrix has a comparable oxygen isotopic composition to the matrices of CM meteorites. The xenolith's chondrules lack fine‐grained rims, whereas the xenolith itself has a fine‐grained rim that is petrographically and chemically comparable with the rims on coarse grained objects in LAP 02239 and other CM meteorites. These properties show that the xenolith's parent body was formed from similar materials to the CM parent body(ies). Following its lithification by aqueous alteration, a piece of the xenolith's parent body was impact‐ejected, acquired a fine‐grained rim while free‐floating in the protoplanetary disc, then was accreted along with rimmed chondrules and other materials to make the LAP 02239 parent body. Subsequent aqueous processing of the LAP 02239 parent body altered the fine‐grained rims on the xenolith, chondrules, and CAIs. The xenolith shows that the timespan of geological evolution of carbonaceous chondrite parent bodies was sufficiently long for some of them to have been aqueously altered before others had formed.

Funder

Science and Technology Facilities Council

Publisher

Wiley

Subject

Space and Planetary Science,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3