Inhibiting acid‐sensing ion channel exerts neuroprotective effects in experimental epilepsy via suppressing ferroptosis

Author:

Shi Xiaorui12ORCID,Liu Ru123,Wang Yingting12,Yu Tingting12,Zhang Kai14ORCID,Zhang Chao14,Gu Yuyu1,Zhang Limin1,Wu Jianping123ORCID,Wang Qun125ORCID,Zhu Fei12

Affiliation:

1. Department of Neurology, Beijing Tiantan Hospital Capital Medical University Beijing China

2. China National Clinical Research Center for Neurological Diseases Beijing China

3. Advanced Innovation Center for Human Brain Protection Capital Medical University Beijing China

4. Department of Neurosurgery, Beijing Tiantan Hospital Capital Medical University Beijing China

5. Center of Epilepsy, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders Capital Medical University Beijing China

Abstract

AbstractBackgroundEpilepsy is a chronic neurological disease characterized by repeated and unprovoked epileptic seizures. Developing disease‐modifying therapies (DMTs) has become important in epilepsy studies. Notably, focusing on iron metabolism and ferroptosis might be a strategy of DMTs for epilepsy. Blocking the acid‐sensing ion channel 1a (ASIC1a) has been reported to protect the brain from ischemic injury by reducing the toxicity of [Ca2+]i. However, whether inhibiting ASIC1a could exert neuroprotective effects and become a novel target for DMTs, such as rescuing the ferroptosis following epilepsy, remains unknown.MethodsIn our study, we explored the changes in ferroptosis‐related indices, including glutathione peroxidase (GPx) enzyme activity and levels of glutathione (GSH), iron accumulation, lipid degradation products‐malonaldehyde (MDA) and 4‐hydroxynonenal (4‐HNE) by collecting peripheral blood samples from adult patients with epilepsy. Meanwhile, we observed alterations in ASIC1a protein expression and mitochondrial microstructure in the epileptogenic foci of patients with drug‐resistant epilepsy. Next, we accessed the expression and function changes of ASIC1a and measured the ferroptosis‐related indices in the in vitro 0‐Mg2+ model of epilepsy with primary cultured neurons. Subsequently, we examined whether blocking ASIC1a could play a neuroprotective role by inhibiting ferroptosis in epileptic neurons.ResultsOur study first reported significant changes in ferroptosis‐related indices, including reduced GPx enzyme activity, decreased levels of GSH, iron accumulation, elevated MDA and 4‐HNE, and representative mitochondrial crinkling in adult patients with epilepsy, especially in epileptogenic foci. Furthermore, we found that inhibiting ASIC1a could produce an inhibitory effect similar to ferroptosis inhibitor Fer‐1, alleviate oxidative stress response, and decrease [Ca2+]i overload by inhibiting the overexpressed ASIC1a in the in vitro epilepsy model induced by 0‐Mg2+.ConclusionInhibiting ASIC1a has potent neuroprotective effects via alleviating [Ca2+]i overload and regulating ferroptosis on the models of epilepsy and may act as a promising intervention in DMTs.

Funder

Natural Science Foundation of Beijing Municipality

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3