Abundance and detection of feral cats decreases after severe fire on Kangaroo Island, Australia

Author:

Hohnen Rosemary12ORCID,James Alex I.3,Jennings Paul3,Murphy Brett P.1,Berris Karleah3ORCID,Legge Sarah M.145,Dickman Chris R.6,Woinarski John C. Z.1

Affiliation:

1. National Environmental Science Program Threatened Species Recovery Hub, Research Institute for the Environment and Livelihoods Charles Darwin University Northwest Territories Casurina Australia

2. NRM South Tasmania South Hobart Australia

3. Kangaroo Island Landscape Board South Australia Kingscote Australia

4. National Environmental Science Program Threatened Species Recovery Hub University of Queensland Queensland St. Lucia Australia

5. National Environmental Science Program Threatened Species Recovery Hub, Fenner School of Society and Environment The Australian National University Australian Capital Territory Canberra Australia

6. National Environmental Science Program Threatened Species Recovery Hub, Desert Ecology Research Group, School of Life and Environmental Sciences The University of Sydney New South Wales Camperdown Australia

Abstract

AbstractPredation by feral cats (Felis catus) has caused the extinction of many native species in Australia and globally. There is growing evidence that the impacts of feral cats can be amplified in post‐fire environments, as cats are drawn to hunt in or around recently burnt areas and are also more effective hunters in open habitats. In 2018–2019, we established arrays of camera traps to estimate the abundance of feral cats on Kangaroo Island, South Australia. Much of the island (including five of our seven survey sites) was subsequently burnt in a severe wildfire (December 2019–February 2020). We re‐sampled the sites 3–8 months post‐fire (seven sites) and 11–12 months post‐fire (three sites). At two unburnt sites sampled post‐fire, it was possible to produce density estimates of cats using a spatially explicit capture–recapture approach. Where estimating density was not possible (due to low detections or individual cats not being distinguishable), the number of individuals and percentage of trap nights with detections was compared between the sampling periods. Some low‐level cat control occurred within 2 km of three of the seven arrays (all within the burn scar) within 3 months of the fire. Across the five burnt sites, there was a decline in cat detections post‐fire (including those without post‐fire cat control). At 3–8 months post‐fire, there was, on average, a 57% reduction in the number of individual cats, and a 65% reduction in the number of nights with cat detections, relative to pre‐fire levels. Although cat detections declined following the fire, reduced population sizes of prey species and reduced cover as a result of the fire might still mean that cat predation is a threat to some surviving prey species. Management that reduces feral cat predation pressure on wildlife following wildfire should enhance the likelihood of post‐fire wildlife persistence and recovery.

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3