Ocean warming and novel species interactions boost growth and persistence of range‐extending tropical fishes but challenge that of sympatric temperate species in temperate waters

Author:

Sasaki Minami1,Monaco Cristián J.2,Booth David J.3,Nagelkerken Ivan1ORCID

Affiliation:

1. Southern Seas Ecology Laboratories School of Biological Sciences, the University of Adelaide Adelaide South Australia Australia

2. IFREMER, IRD, Institut de Louis‐Malardé, Univ Polynésie française, UMR‐241 SECOPOL Taravao Tahiti French Polynesia

3. Fish Ecology Lab, Faculty of Science University of Technology Sydney Sydney New South Wales Australia

Abstract

AbstractAimClimate change can have a broad range of impacts on the physiology and behaviour of animals. These effects can be mediated by the presence of other species in the community, but current forecasts of species responses to climate change largely ignore biological interactions. This is particularly true for novel interactions between range‐extending and native species, as this is often considered as noise and excluded from predictive models. Here we simulate how a tropical range‐extending and a local temperate fish species respond to the independent and combined effects of future ocean warming (RCPs 4.5 and 8.5) and novel ecological interactions in temperate ecosystems.LocationEast coast of Australia, along a ~ 2,000 km latitudinal gradient in a global climate warming hotspot.TaxonAbudefduf vaigiensis (tropical) and Atypicthys strigatus (temperate) fishes.MethodsWe use a dynamic energy budget model to simulate the length growth (i.e., increases in body length of individuals over time) and population persistence of juveniles of a tropical and a temperate fish species that form mixed‐species shoals, under different climate scenarios with and without the effects of novel ecological interactions.ResultsOur model forecasts that length growth of the juvenile tropical species will increase under ocean warming across subtropical to temperate regions. This increased length growth will be more drastic in temperate regions than in the subtropics, as winter warming will allow the tropical species to overwinter more frequently and show positive growth throughout the year. In contrast, warmer summer temperatures in the subtropics will likely exceed the optimal temperature of the juvenile temperate species at their trailing edge, resulting in reduced length growth under climate warming. Novel species interactions increased length growth of the juvenile tropical species but did not affect its winter or summer survival. In contrast, novel species interactions with tropical species were forecast to reduce length growth of the juvenile temperate species.Main ConclusionsOur study suggests that for some coastal fish species future warming will likely reverse body size dominance between temperate and tropical fish species, with increased novel interactions in temperate ecosystems (due to range extensions) but decreased novel interactions in the subtropics (due to range contractions). Novel species interactions and warming effects on body size and species survival are likely to reshuffle temperate fish communities and their competitive interactions.

Funder

NSW Department of Primary Industries

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3