The role of mycorrhizal fungi in driving ecotype formation in mycoheterotrophic plants

Author:

Jacquemyn Hans1ORCID,Suetsugu Kenji2ORCID,Merckx Vincent34

Affiliation:

1. Department of Biology, KU Leuven Heverlee Belgium

2. Department of Biology, Graduate School of Science Kobe University Hyogo Kobe Japan

3. Understanding Evolution, Naturalis Biodiversity Center Leiden Netherlands

4. Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam Amsterdam Netherlands

Abstract

In his seminal paper, Göte Turesson proposed the term ecotype as the ‘ecological unit to cover the product arising as a result of the genotypical response of an ecospecies to a particular habitat'. Turesson further outlined that to fully understand the ecology of a species, a knowledge of its most important ecotypes is needed. Whereas Turesson's original idea of an ecotype mainly referred to the response of a species to abiotic conditions, there is mounting evidence that ecotypes can also originate as a response to biotic conditions. Hence, to understand the ecology of a species, one should also understand the distribution and variation in biotic interactions. For plants, one such biotic interaction involves mycorrhizal fungi. Particularly in mycoheterotrophic plants, i.e. plants that rely on mycorrhizal fungi for their carbon supply, adaptation to and specialization on mycorrhizal fungi have the potential to drive ecotype formation and speciation. In this paper, we provide evidence that populations of mycoheterotrophic plants inhabiting contrasting habitats commonly encounter divergent mycorrhizal fungal communities leading to geographic mosaics of mycorrhizal interactions. Adaptation to local fungal communities, in turn, can induce (partial) reproductive isolation and contribute to ecotype and ultimately species formation as a result of decreased fitness of immigrant genotypes (immigrant inviability). In the most extreme case, loss of photosynthesis and mycorrhizal switching have led to reproductive isolation and the development of novel species that have become fully mycoheterotrophic. Such shifts have occurred repeatedly during the evolutionary history of land plants. We conclude that mycorrhizal fungi not only contribute to the early divergence of populations of mycoheterotrophic plants, but also play a crucial role in the further diversification and origination of this unique set of species that rely on mycorrhizal fungi for obtaining carbon and completing their life cycle.

Publisher

Wiley

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3