Short‐Term Soil Waterlogging Improves Cotton Tolerance to High Temperature by Triggering Antioxidant Defence System in Cotton Seedlings

Author:

Wang Haimiao12ORCID,Huang Li12,Yang Pan12,Zeng Xianghua12,Huang Yuli12,Yuan Wenting12,Kou Yixuan12,Zhang Zhiyong12

Affiliation:

1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education Guilin Guangxi China

2. Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin Guangxi Normal University Guilin Guangxi China

Abstract

ABSTRACTSoil waterlogging and high temperature (HT) are serious abiotic stresses that negatively affect cotton growth and yield. Yet effects of prewaterlogging to HT subsequently in cotton seedlings have not been obtained. To address this, two temperature conditions (30/20°C and 35/25°C) and two soil waterlogging levels (0 and 3 days) were established during the cotton seedling stage. Results showed that indexes of plant performance were decreased markedly under HT. Unexpectedly, plant performance for the treatment of HT combined with 3 days of soil waterlogging (HW) was better than HT treatment (specifically, increase of 7.9%, 9.0%, 10.2%, 5.4% and 4.6% in leaf area, plant height, belowground biomass, aboveground biomass and root‐to‐shoot ratio was detected). Decreases in MDA (malondialdehyde), H2O2 (hydrogen peroxide) contents and (superoxide radicals) generation rate under HW treatment were observed by 14.1%, 7.7% and 14.1%, respectively, compared with HT. Moreover, ASA (ascorbic acid) content and DHAR (dehydroascorbate reductase) activity were improved by 19.7% and 13.8% for HW treatment relative to HT, however, the opposite situation for activities of APX (ascorbate peroxidase) and GR (glutathione reductase). Besides, activities of SOD (superoxide dismutase), CAT (catalase) and POD (peroxidase) in HW treatment were increased by 16.7%, 8.3% and 18.4%, separately. Thus, we concluded that short‐term soil waterlogging improved cotton cross‐tolerance to the continued high‐HT stress by enhanced SOD, CAT, POD and DHAR activities, increased ASA content in cotton seedlings. These results were expected to provide a theoretical basis for understanding cotton's cross‐tolerance to abiotic stress.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3