Biodegradable nanoparticles as theranostics of ovarian cancer: an overview

Author:

Chaurasiya Swati1,Mishra Vijay1ORCID

Affiliation:

1. Department of Pharmaceutics, Lovely Institute of Technology (Pharmacy), Lovely Professional University, Phagwara, India

Abstract

Abstract Objectives Above 10 million people are suffering from cancers every year. As per American Cancer Society, more than 22 440 new cases and 14 080 deaths were reported from ovarian cancer yearly worldwide. This review explores the current status, challenges and future perspectives of tumour-targeted theranostic nanoparticles (NPs). Key findings Most of the ovarian malignancy cases are uncovered after the disease is in a difficult state due to poor screening techniques and non-specific symptoms. In this manner, forceful and fruitful treatment is required that will indicate insignificant lethal impacts to solid tissue. In the current research, stealth biodegradable NPs are produced as vehicles for imaging and treatment of ovarian cancer as the controlled and targeted delivery of chemotherapeutic as well as imaging agents. To enhance the dependability of the colloidal suspension as well as to increase their circulation lifetime, NPs are introduced by incorporating the functional poly(ethylene glycol) on their surface, which also provides a site to conjugation of focusing on agents to ovarian tissue. Summary Biodegradable theranostic NPs can be fabricated and surface engineered without any alteration in drug-loading capacity, safety and efficacy. These NPs have shown promising results in imaging as well as treatment of ovarian cancer.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

Reference69 articles.

1. Nanotechnology for early cancer detection;Choi;Sensors,2010

2. An overview about mitochondrial DNA mutations in ovarian cancer;Mahalaxmi;Alexandria J Med,2017

3. Current status of maintenance therapy for advanced ovarian cancer;Hope;Int J Womens Health,2009

4. Multi-functional nanoparticles and their role in cancer drug delivery-a review;Pathak;J Nanotechnol,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3