Endocannabinoids modulate Gq/11 protein-coupled receptor agonist-induced vasoconstriction via a negative feedback mechanism

Author:

Karpińska Olga1ORCID,Baranowska-Kuczko Marta1,Kloza Monika1,Kozłowska Hanna1

Affiliation:

1. Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland

Abstract

Abstract Objectives The endocannabinoid (eCB) system centrally and peripherally regulates cardiovascular parameters, including blood pressure, in health and disease. The relationship between Gq/11 protein-coupled receptor activation, regulation of eCBs release (mainly 2-arachidonoylglycerol) and subsequent CB1 receptor activation was initially observed in the central nervous system. Here, we review the latest findings from systemic physiological studies which include for the first time data from pulmonary arteries. We present evidence for direct CB1-dependent cannabinoid ligand-induced vasorelaxation, vascular expression of eCBs along with their degradation enzymes, and indicate the location of the described interaction. Key findings Endocannabinoids (mainly 2-arachidonoylglycerol), acting via CB1 receptors, evoke vasodilatory effects and may modulate responses of vasoconstrictors for Gq/11 protein-coupled receptors including angiotensin II, thromboxane A2, phenylephrine, noradrenaline in systemic or pulmonary arteries. However, the role of the endothelium in this interaction is not well-established, and the precise vascular location of eCB system components remains unclear, which contributes to discrepancies in the interpretation of results when describing the above-mentioned relationship. Summary Endocannabinoid's negative feedback is responsible for diminishing agonist-induced vasoconstriction, which may be clinically important in the treatment of arterial and pulmonary hypertension. Further research is required to establish the importance of the eCB system and its downstream signalling pathways.

Funder

Medical University of Białystok

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3