Gene Transcription Profile in Mice Vaccinated with Ultraviolet-attenuated Cercariae of Schistosoma japonicum Reveals Molecules Contributing to Elevated IFN-γ Levels

Author:

Zhu Xiang1,Zhang Zhao-Song1,Ji Min-Jun1,Wu Hai-Wei1,Wang Yong1,Cai Xiao-Ping1,Zhang Lei1,Hu Shu-Ying1,Fu Lin-Lin1,Liu Feng1,Su Chuan1,Wu Guan-Ling1

Affiliation:

1. Department of Pathogenic Biology, Nanjing Medical University Nanjing 210029, China

Abstract

AbstractVaccination with ultraviolet-attenuated cercariae of Schistosoma japonicum induced protective immunity against challenge infection in experimental animal models. Our preliminary study on the transcription levels of IFN-γ and IL-4 in splenic CD4+ T cells revealed that attenuated cercariae elicited predominantly a Th1 response in mice at the early stage, whereas normal cercariae stimulated primarily Independent responses. Further analysis on the gene profile of the skin-draining lymph nodes demonstrated that the levels of IFN-γ were significantly higher in vaccinated mice than those in infected mice at day 4, 7 and 14 post-vaccination or post-infection. However, for IL-12 and IL-4, the potent inducers of Th1 and Th2 responses, respectively, as well as IL-10, there were no differences over the course of the experiment between the infected and vaccinated mice. To explore the underlying factors that may potentially contribute to elevated IFN-γ in vaccinated mice, the mRNA profiles of the skin-draining lymph nodes at day 4 post-exposure were compared using oligonucleotide microarrays. Within the 847 probe sets with increased signal values, we focused on chemokines, cytokines and relevant receptors, which were validated by semi-quantitative RT-PCR. A comprehensive understanding of the immune mechanisms of attenuated cercariae-induced protection may contribute to developing efficient vaccination strategies against S. japonicum, especially during the early stage of infection.

Publisher

China Science Publishing & Media Ltd.

Subject

General Medicine,Biochemistry,Biophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3