Statistical modelling and forecasting annual sugarcane production in India: Using various time series models

Author:

Tyagi Sanjay1ORCID,Chandra Shalini1,Tyagi Gargi1

Affiliation:

1. Department of Mathematics and Statistics Banasthali Vidyapith University Jaipur India

Abstract

AbstractThis paper proposes a comparison of various time series forecasting models to forecast annual data on sugarcane production over 63 years from 1960 to 2022. In this research, the Mean Forecast Model, the Naive Model, the Simple Exponential Smoothing Model, Holt's model, and the Autoregressive Integrated Moving Average time series models have all been used to make effective and accurate predictions for sugarcane. Different scale‐dependent error forecasting techniques and residual analysis have been used to examine the forecasting accuracy of these time series models. SE of Residuals, Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and Akaike's Information Criterion (AIC) are used to analyse the forecast's accuracy. The best model has been selected based on the predictions with the lowest value, according to the three‐performance metrics of RMSE, MAE, and AIC. The estimated sugarcane production shows an increasing trend for the next 10 years and is projected to be 37,763.38 million tonnes in the year 2032. Further, empirical results support the plan and execution of viable strategies to advance sugarcane production in India to fulfil the utilisation need of the increasing population and further improve food security.

Publisher

Wiley

Subject

Agronomy and Crop Science

Reference31 articles.

1. A new look at the statistical model identification

2. Economic forecasting in agriculture

3. Forecasting of agricultural scenario in Tamilnadu—A time series analysis;Balanagammal D.;Journal of the Indian Society of Agricultural Statistics,2000

4. Seasonal modeling and forecasting of crop production;Balasubramanian P.;Statistics and Applications,2002

5. Forecasting Spring Wheat Yield Using Time Series Analysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3