Rheological, mechanical, and electrical properties of Sr0.7Bi0.2TiO3 modified BaTiO3 ceramic and its composites

Author:

Yan Yan1,Zeng Xinyu1,Deng Tao1,Chen Fukang1,Yang Lishun1,He Zhanbing2,Jin Li3ORCID,Liu Gang1

Affiliation:

1. School of Materials and Energy Southwest University Chongqing China

2. State Key Laboratory for Advanced Metals and Materials University of Science and Technology Beijing Beijing China

3. Electronic Materials Research Laboratory Key Laboratory of the Ministry of Education School of Electronic Science and Engineering Xi'an Jiaotong University Xi'an China

Abstract

AbstractPorous BaTiO3‐based relaxor ferroelectric ceramics with lamellar structure were achieved by ice templating method, and the rheological properties of ceramic slurry for freeze casting were deeply studied. Epoxy resin was then backfilled to generate ceramic–epoxy resin composites. Ceramic–epoxy composites with a lamellar structure were obtained when using a slurry with a ceramic content of 45 wt.%. The nanoindentation results showed that the introduction of ceramic materials into the epoxy resin can significantly improve the penetration resistance and hardness of the material. The dielectric and ferroelectric properties of the composites were also characterized. The interaction between the highly coupled dipoles in the polymers results in a decrease in the breakdown field strength of the composite. The dielectric constant reached up to ∼800. At 220 kV/cm, Wrec = 0.62 J/cm3, and η was ∼80%. At low frequencies, Wrec was ∼0.16 J/cm3, which indicated good stability.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3