Screening rare‐earth aluminates as promising thermal barrier coatings by high‐throughput first‐principles calculations

Author:

Chu Kaili1,Zhang Yanning1,Zhao Juanli1,Liu Yuchen12,Li Yiran1ORCID,Li Wenxian13,Liu Bin1ORCID

Affiliation:

1. School of Materials Science and Engineering Shanghai University Shanghai China

2. School of Materials Science and Engineering Institute for Advanced Ceramics, Harbin Institute of Technology Harbin Heilongjiang China

3. School of Material Science and Engineering University of New South Wales Sydney New South Wales Australia

Abstract

AbstractThermal barrier coatings (TBCs) play an important role in gas turbines to protect the turbine blades from the high‐temperature airflow damage. In this work, we use first‐principles calculations to investigate a specific class of rare‐earth (RE) aluminates, including cubic‐REAlO3(c‐REAlO3), orthorhombic‐REAlO3(o‐REAlO3),RE3Al5O12, andRE4Al2O9, to predict their structural stability, bonding characteristics, and mechanical and thermal properties. The polyhedron structures formed by the Al–O bonds are stronger and exhibit rigid characteristics, whereas the polyhedra formed by theRE–O bonds are relatively weak and soft. The alternating stacking of AlO4tetrahedra, AlO6octahedra, andRE–O polyhedra, as well as the selection ofREelements, shows intensive influences on the expected mechanical and thermal properties. TheB,G, andEof these four types of aluminates decrease in the order of c‐REAlO3 > o‐REAlO3 > RE3Al5O12 > RE4Al2O9.REAlO3andRE4Al2O9are brittle and quasi‐ductile ceramics, respectively, whereasRE3Al5O12is tailorable. The minimum thermal conductivity is in the range of 1.4–1.5 W m−1 K−1for c‐REAlO3, 1.3–1.4 W m−1 K−1for o‐REAlO3, 1.25–1.35 W m−1 K−1forRE3Al5O12, and 0.8–0.9 W m−1 K−1forRE4Al2O9.RE4Al2O9with low thermal conductivity and damage tolerance is predicted to be the potential candidates for next‐generation TBC materials.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning

Publisher

Wiley

Subject

Materials Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3