CuGaO2/TiO2 heterostructure nanosheets: Synthesis, enhanced photocatalytic performance, and underlying mechanism

Author:

Li Jia‐Qi1,Zhao Qing‐Meng1,Zhou Yong‐Dong1,Zhao Zong‐Yan1ORCID

Affiliation:

1. Faculty of Materials Science and Engineering Kunming University of Science and Technology Kunming P. R. China

Abstract

AbstractEffective separation and fast transport of photogenerated carriers are vital links determining the photocatalytic performance. Heterostructure constructed by two complementary semiconductors is a feasible strategy to achieve this goal. By one‐pot hydrothermal method, 0D‐TiO2 nanoparticles are loaded onto 2D‐CuGaO2 nanosheets, forming a mixed dimension, closely combined heterostructure. The photocurrent density of CuGaO2/TiO2 heterostructure is ∼16.6 μA/cm2, which is 1.24 times higher than that of pristine CuGaO2 nanosheets (∼13.4 μA/cm2) and 15 times higher than that of TiO2 (∼1.1 μA/cm2). In the tetracycline hydrochloride degradation experiment, the degradation efficiency of tetracycline hydrochloride by CuGaO2/TiO2 heterostructure reached 99% within 90 min, which was 1.2 times the degradation efficiency of CuGaO2 nanoparticles (82%) and 20.2 times the degradation rate of TiO2 (4.9%). A series of experimental characterizations combined with density functional theory calculations revealed that it is the built‐in electric field in the CuGaO2/TiO2 interface region that drives the photogenerated electron–hole pairs to travel in the opposite direction, thus inhibiting their recombination. Furthermore, the energy band offset of the CuGaO2/TiO2 interface makes it easier for the photogenerated holes and electrons to gather onto the valence band of the CuGaO2 nanosheets and the conduction band of the TiO2 nanoparticles, respectively. Therefore, appropriate interface lattice matching, suitable configuration of band gap and band edge positions, and strong opposite drive of interface electric field enable CuGaO2/TiO2 heterostructure to achieve wide spectral response and effective separation of photogenerated electron–hole pairs at the same time.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Ceramics and Composites

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3