Dynamic of polar nanoregions and its impact on the pyroelectric and dielectric properties in paraelectric KTN materials

Author:

Meng Xiangda12ORCID,Huang Xiaolin1,Zhi Wenhao1,Xing Bohan1,Tian Hao134ORCID

Affiliation:

1. School of Physics Harbin Institute of Technology Harbin China

2. Heilongjiang Provincial Key Laboratory of Plasma Physics and Application Technology Harbin China

3. Key Laboratory of Micro‐Nano Optoelectronic Information System Ministry of Industry and Information Technology Harbin China

4. Collaborative Innovation Center of Extreme Optics Shanxi University Taiyuan Shanxi China

Abstract

AbstractThe origin of the excellent properties of KTN‐based materials around Curie temperature (TC), which should be originated form the motion of polar nanoregions (PNRs), has attracted considerable research interest. In this paper, the relaxation of a KTa0.63Nb0.37O3 single crystal is discussed with the temperature dependence of permittivity. Moreover, its pyroelectric effect above TC is investigated. In detail, the pyroelectric coefficient decreases from ∼110.0 to ∼13.0 μC/(m2 K), with the temperature increasing from 22 to 33°C, and finally reduces to 0 at 100°C with PNRs disappear. Moreover, the dynamic dielectric nonlinearity for the KTN single crystal is studied in the paraelectric phase. To investigate these mechanisms, the amplitude and phase angle of the first and third harmonics under various electric fields, frequencies, and temperatures are analyzed. As a result, the motions of PNRs induced by electric field, which is pinned and depinned by the defect, are presented to explain the nonlinear dielectric response observed in the paraelectric KTN single crystal.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3