Isoxazole 9 (ISX9), a small molecule targeting Axin, activates Wnt/β‐catenin signalling and promotes hair regrowth

Author:

Sayed Sapna1,Song Jiaxing12,Wang Ling1,Muluh Tobias Achu3,Liu Boxin1,Lin Zhixian1,Tang Yun1,Su Zijie1,Li Huan1,Xue Vivian Weiwen1,Liu Shanshan1,Chen Xianxiong3,Zhou Guangqian3,Sun Qi1,Lu Desheng1ORCID

Affiliation:

1. Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology Shenzhen University Medical School Shenzhen China

2. Medical Scientific Research Center, Life Sciences Institute Guangxi Medical University Nanning China

3. Department of Physiology Shenzhen University Medical School Shenzhen China

Abstract

Background and PurposeIsoxazole 9 (ISX9) is a neurogenesis‐promoting small molecule compound that can up‐regulate the expression of NeuroD1 and induce differentiation of neuronal, cardiac and islet endocrine progenitors. So far, the molecular mechanisms underlying the action of ISX9 still remain elusive.Experimental ApproachTo identify a novel agonist of the Wnt/β‐catenin, a cell‐based SuperTOPFlash reporter system was used to screen known‐compound libraries. An activation effect of ISX9 on the Wnt/β‐catenin pathway was analysed with the SuperTOPFlash or SuperFOPFlash reporter system. Effects of ISX9 on Axin1/LRP6 interaction were examined using a mammalian two‐hybrid system, co‐immunoprecipitation, microscale thermophoresis, emission spectra and mass spectrometry assays. The expression of Wnt target and stemmness marker genes were evaluated with real‐time PCR and immunoblotting. In vivo hair regeneration abilities of ISX9 were analysed by immunohistochemical staining, real‐time PCR and immunoblotting in hair regrowth model using C57BL/6J mice.Key ResultsIn this study, ISX9 was identified as a novel agonist of the Wnt/β‐catenin pathway. ISX9 targeted Axin1 by covalently binding to its N‐terminal region and potentiated the LRP6‐Axin1 interaction, thereby resulting in the stabilization of β‐catenin and up‐regulation of Wnt target genes and stemmness marker genes. Moreover, the topical application of ISX9 markedly promoted hair regrowth in C57BL/6J mice and induced hair follicle transition from telogen to anagen via enhancing Wnt/β‐catenin pathway.Conclusions and ImplicationsTaken together, our study unravelled that ISX9 could activate Wnt/β‐catenin signalling by potentiating the association between LRP6 and Axin1, and may be a promising therapeutic agent for alopecia treatment.

Funder

Shenzhen Technical Project

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Natural Science Foundation of Shenzhen City

Publisher

Wiley

Subject

Pharmacology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3