Population genetics and ecological niche modelling provide insights into management strategies of the herbivorous pest Phytomyza horticola (Diptera: Agromyzidae)

Author:

Liang Yongxuan12ORCID,Du Sujie1,Jin Zhenan1,Xu Shiyun12,Wan Weijie1,Zhong Yujun1,Li Qiao1,Zhou Qiong2,Guo Jianyang1,Liu Wanxue1

Affiliation:

1. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection Chinese Academy of Agricultural Sciences Beijing China

2. College of Life Sciences Hunan Normal University Changsha China

Abstract

AbstractAimResearch on population genetic patterns and potential distribution dynamics can provide insights into the development of pest management strategies. Herein, we integrated population genetic analyses with the climatic niche approach to investigate spatial population genetic variations and potential geographical distribution (PGD) of the herbivorous pest Phytomyza horticola. We also analysed its population response patterns to both late Pleistocene climatic events and future climate change.LocationChina.MethodsWe analysed the patterns of genetic diversity distribution in 29 populations from 19 regions across China using three mitochondrial (COI, COII and Cytb) genes as markers. We estimated demographic histories using neutrality tests, mismatch distributions and Bayesian skyline plots. Changes in PGD were assessed using an ecological niche model.ResultsHigh genetic diversity was found in most populations, and the northern population exhibited higher haplotype diversity. The population genetic structure included the Tibet lineage and a large lineage comprising the remaining populations. Demographic analyses indicated that rapid population expansion occurred during the cold Last Glacial Maximum. In addition, our projections suggested that P. horticola currently has a vast PGD in China, for which the human influence index was the strongest variable. Large areas of cold northern regions were highly suitable for its survival. Under future global warming, highly suitable habitats will shift towards the higher latitudes.Main conclusionsP. horticola is widely distributed across varied environments, which may be attributed to its high degree of genetic variation. Human activities likely facilitated the current PGD and the frequent gene flow that homogenized differentiation among most populations. In addition, P. horticola exhibits strong adaptability to cold climates and environments from the past to the future. Considering future climatic changes, prevention and control should focus on high‐latitude regions, and vigilance regarding human‐mediated pest dispersals and outbreaks should be maintained.

Funder

National Basic Research Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3