Evaluation of the effect of diode laser application on the hydrophilicity, surface topography, and chemical composition of titanium dental implant surface

Author:

Rezeka Mostafa Ahmed1,Metwally Nayrouz Adel1ORCID,Abd El Rehim Samia S.2,Khamis Mohamed Moataz1ORCID

Affiliation:

1. Department of Prosthodontics Faculty of Dentistry Alexandria University Alexandria Egypt

2. Department of Oral Biology Faculty of Dentistry Alexandria University Alexandria Egypt

Abstract

AbstractPurposeAttempts have been made to decontaminate the implant surface by using diode lasers. However, the parameters that provide efficient decontamination without altering the topography or surface characteristics of titanium implants are still unclear. The aim of the present study was to evaluate the effect of altering the power of diode laser (940 nm) application on the hydrophilicity, surface topography, and chemical composition of sandblasted, large grit, acid‐etched (SLA) treated titanium alloy implant surface.Materials and MethodsThirty‐six SLA‐treated titanium discs (Dentis Co., Ltd.) were used in this study. The hydrophilicity of all discs was measured by using a contact angle goniometer (190 CA; Rame‐hart Co, Ltd). Discs were randomly divided into four groups (n = 9 each) based on the power of the diode laser used. Group I (control, no lasing group), group II: treated with 1 W power, group III: 2 W power, and group IV: 3 W power. The chemical composition of the SLA discs was evaluated by using energy dispersive x‐ray spectroscopy (EDX) before laser application. Hydrophilicity was reevaluated after the application of laser irradiation. The surface topography of all discs was examined. Changes in the chemical composition of the titanium discs were investigated following the lasing procedure. Morphometric analysis of the surface area (μm2) of the indentations created following laser application was also evaluated. Data were collected and the Shapiro‐Wilk test of normality was used. Comparisons between the four study groups were done by using the Kruskal‐Wallis test, while that to evaluate the morphometric analysis of the surface area was done by using One‐way ANOVA (P < 0.05).ResultsThe average contact angle of the drop of distilled water to the SLA discs significantly decreased after laser treatment (P < 0.05). The largest contact angle was measured in the control group, followed by the 1 W group, and the 2 W group. The smallest angle was measured in the 3 W group. Considerable surface alterations such as melting and flattening were observed on examination of the surface topography of the 3 W group followed by the 2 W group. The least changes were observed in association with the 1 W group in comparison to the control group. The EDX analysis showed the appearance of peaks of the oxygen and carbon elements after the lasing procedure with the highest percentage in the 3 W group. The average of the surface area of the created indentations significantly increased with increasing the power of the diode laser used (P < 0.05).ConclusionsThe application of diode laser (940 nm) with 2 W and 3 W powers significantly altered the hydrophilicity, the surface topography, and the chemical composition of titanium discs. Diode laser (940 nm) with 1 W power can be safely used on SLA titanium implant surfaces with no damaging effect on the surface topography or hydrophilicity.

Publisher

Wiley

Subject

General Dentistry

Reference23 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3