Testing strategies to enhance transplant success under stressful conditions at a tidal marsh restoration project

Author:

Pausch Rachel1ORCID

Affiliation:

1. Department of Ecology and Evolutionary Biology University of California, Santa Cruz Santa Cruz CA 95060 U.S.A.

Abstract

Tidal marsh restoration is becoming an increasingly common tool to plan for future sea level rise. Subsided marshes' elevation can be restored through sediment additions, which may necessitate the reestablishment of vegetation. Understanding key actions to increase vegetation cover at areas that remain persistently bare following elevation restoration is a critical component of a project's long‐term success. Dominant species can shape ecosystem function, as well as ameliorate stressful environments. We transplanted the dominant species, Salicornia pacifica, into bare areas of a restored tidal marsh in central California, United States, 3 years following a sediment addition. We tested salt hardening of plants before transplanting, targeted irrigation, transplant size, and planting configuration to identify management actions that could help vegetation persist in the most stressful areas of the high marsh. Weekly targeted irrigation until the first rains began was critical for small plant survivorship. We found that larger plants had increased survivorship and contributed higher amounts of growth and cover but did not facilitate the performance of nearby smaller plants. After 2 years, we determined that using lone, larger plants was more cost‐effective than multiple smaller plants at our tidal marsh. However, performance was highly site‐specific with dramatically less growth at a drier site with sandier soil. Our results highlight the importance of identifying site‐specific restoration strategies that either ameliorate or help plants tolerate stressful conditions, contributing to the continued success of tidal marsh restoration for climate resilience.

Funder

National Science Foundation Graduate Research Fellowship Program

California Native Plant Society

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3