Unacylated Ghrelin Protects Against Age‐Related Loss of Muscle Mass and Contractile Dysfunction in Skeletal Muscle

Author:

Kim Hyunyoung1,Ranjit Rojina23,Claflin Dennis R.45,Georgescu Constantin6,Wren Jonathan D.6,Brooks Susan V.45,Miller Benjamin F.27,Ahn Bumsoo1ORCID

Affiliation:

1. Department of Internal Medicine Wake Forest University School of Medicine Winston‐Salem North Carolina USA

2. Aging and Metabolism Research Program Oklahoma Medical Research Foundation Oklahoma City Oklahoma USA

3. Department of Biochemistry University of Oklahoma Health Sciences Center Oklahoma City Oklahoma USA

4. Department of Biomedical Engineering University of Michigan Ann Arbor Michigan USA

5. Department of Molecular and Integrative Physiology University of Michigan Ann Arbor Michigan USA

6. Genes and Human Disease Research Program Oklahoma Medical Research Foundation Oklahoma City Oklahoma USA

7. Oklahoma City VA Medical Center Oklahoma City Oklahoma USA

Abstract

AbstractSarcopenia, the progressive loss of muscle mass and function, universally affects older adults and is closely associated with frailty and reduced quality of life. Despite the inevitable consequences of sarcopenia and its relevance to healthspan, no pharmacological therapies are currently available. Ghrelin is a gut‐released hormone that increases appetite and body weight through acylation. Acylated ghrelin activates its receptor, growth hormone secretagogue receptor 1a (GHSR1a), in the brain by binding to it. Studies have demonstrated that acyl and unacylated ghrelin (UnAG) both have protective effects against acute pathological conditions independent of receptor activation. Here, we investigated the long‐term effects of UnAG in age‐associated muscle atrophy and contractile dysfunction in mice. Four‐month‐old and 18‐month‐old mice were subjected to either UnAG or control treatment for 10 months. UnAG did not affect food consumption or body weight. Gastrocnemius and quadriceps muscle weights were reduced by 20%–30% with age, which was partially protected against by UnAG. Specific force, force per cross‐sectional area, measured in isolated extensor digitorum longus muscle was diminished by 30% in old mice; however, UnAG prevented the loss of specific force. UnAG also protected from decreases in mitochondrial respiration and increases in hydrogen peroxide generation of skeletal muscle of old mice. Results of bulk mRNA‐seq analysis and our contractile function data show that UnAG reversed neuromuscular junction impairment that occurs with age. Collectively, our data revealed the direct role of UnAG in mitigating sarcopenia in mice, independent of food consumption or body weight, implicating UnAG treatment as a potential therapy against sarcopenia.

Funder

National Institute on Aging

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3