Stronger evidence for genetic ancestry than environmental conditions in shaping the evolution of a complex signalling trait during biological invasion

Author:

Pita‐Aquino Jessica N.1ORCID,Bock Dan G.2ORCID,Baeckens Simon3,Losos Jonathan B.2,Kolbe Jason J.1

Affiliation:

1. Department of Biological Sciences University of Rhode Island Kingston Rhode Island USA

2. Department of Biology Washington University in St. Louis St. Louis Missouri USA

3. Department of Organismic and Evolutionary Biology Harvard University Cambridge Massachusetts USA

Abstract

AbstractIntroductions of invasive species to new environments often result in rapid rates of trait evolution. While in some cases these evolutionary transitions are adaptive and driven by natural selection, they can also result from patterns of genetic and phenotypic variation associated with the invasion history. Here, we examined the brown anole (Anolis sagrei), a widespread invasive lizard for which genetic data have helped trace the sources of non‐native populations. We focused on the dewlap, a complex signalling trait known to be subject to multiple selective pressures. We measured dewlap reflectance, pattern and size in 30 non‐native populations across the southeastern United States. As well, we quantified environmental variables known to influence dewlap signal effectiveness, such as canopy openness. Further, we used genome‐wide data to estimate genetic ancestry, perform association mapping and test for signatures of selection. We found that among‐population variation in dewlap characteristics was best explained by genetic ancestry. This result was supported by genome‐wide association mapping, which identified several ancestry‐specific loci associated with dewlap traits. Despite the strong imprint of this aspect of the invasion history on dewlap variation, we also detected significant relationships between dewlap traits and local environmental conditions. However, we found limited evidence that dewlap‐associated genetic variants have been subject to selection. Our study emphasizes the importance of genetic ancestry and admixture in shaping phenotypes during biological invasion, while leaving the role of selection unresolved, likely due to the polygenic genetic architecture of dewlaps and selection acting on many genes of small effect.

Funder

National Science Foundation

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3