Impact of multi‐output and stacking methods on feed efficiency prediction from genotype using machine learning algorithms

Author:

Mora Mónica12ORCID,González Pablo3ORCID,Quevedo José Ramón3ORCID,Montañés Elena3ORCID,Tusell Llibertat2ORCID,Bergsma Rob4ORCID,Piles Miriam2ORCID

Affiliation:

1. Departamento de Ciencia Animal Universidad Politècnica de València Valencia Spain

2. Animal Breeding and Genetics Institute of Agrifood Research and Technology (IRTA) Barcelona Spain

3. Artificial Intelligence Centre, University of Oviedo Gijón Spain

4. Topigs Norsvin Research Center Beuningen Netherlands

Abstract

AbstractFeeding represents the largest economic cost in meat production; therefore, selection to improve traits related to feed efficiency is a goal in most livestock breeding programs. Residual feed intake (RFI), that is, the difference between the actual and the expected feed intake based on animal's requirements, has been used as the selection criteria to improve feed efficiency since it was proposed by Kotch in 1963. In growing pigs, it is computed as the residual of the multiple regression model of daily feed intake (DFI), on average daily gain (ADG), backfat thickness (BFT), and metabolic body weight (MW). Recently, prediction using single‐output machine learning algorithms and information from SNPs as predictor variables have been proposed for genomic selection in growing pigs, but like in other species, the prediction quality achieved for RFI has been generally poor. However, it has been suggested that it could be improved through multi‐output or stacking methods. For this purpose, four strategies were implemented to predict RFI. Two of them correspond to the computation of RFI in an indirect way using the predicted values of its components obtained from (i) individual (multiple single‐output strategy) or (ii) simultaneous predictions (multi‐output strategy). The other two correspond to the direct prediction of RFI using (iii) the individual predictions of its components as predictor variables jointly with the genotype (stacking strategy), or (iv) using only the genotypes as predictors of RFI (single‐output strategy). The single‐output strategy was considered the benchmark. This research aimed to test the former three hypotheses using data recorded from 5828 growing pigs and 45,610 SNPs. For all the strategies two different learning methods were fitted: random forest (RF) and support vector regression (SVR). A nested cross‐validation (CV) with an outer 10‐folds CV and an inner threefold CV for hyperparameter tuning was implemented to test all strategies. This scheme was repeated using as predictor variables different subsets with an increasing number (from 200 to 3000) of the most informative SNPs identified with RF. Results showed that the highest prediction performance was achieved with 1000 SNPs, although the stability of feature selection was poor (0.13 points out of 1). For all SNP subsets, the benchmark showed the best prediction performance. Using the RF as a learner and the 1000 most informative SNPs as predictors, the mean (SD) of the 10 values obtained in the test sets were: 0.23 (0.04) for the Spearman correlation, 0.83 (0.04) for the zero–one loss, and 0.33 (0.03) for the rank distance loss. We conclude that the information on predicted components of RFI (DFI, ADG, MW, and BFT) does not contribute to improve the quality of the prediction of this trait in relation to the one obtained with the single‐output strategy.

Funder

Family Process Institute

Publisher

Wiley

Subject

Animal Science and Zoology,Food Animals,General Medicine

Reference32 articles.

1. Blockeel H. De Raedt L. &Ramon J.(2000).Top‐down induction of clustering trees.Proc. 15th Intl. Conf. On Machine Learning.https://doi.org/10.48550/arXiv.cs/0011032

2. A survey on multi-output regression

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3