Affiliation:
1. Department of Botany University of British Columbia Vancouver British Columbia Canada
2. Institute of Parasitology, Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
3. Institut de Biologia Evolutiva CSIC‐Universitat Pompeu Fabra Barcelona Spain
4. Institute of Evolutionary Biology, Biological and Chemical Research Centre University of Warsaw Warsaw Poland
5. Merton College, University of Oxford Oxford UK
6. Department of Biology University of Oxford Oxford UK
7. Fort Lauderdale Research & Education Center Davie Florida USA
Abstract
AbstractMost Parabasalia are symbionts in the hindgut of “lower” (non‐Termitidae) termites, where they widely vary in morphology and degree of morphological complexity. Large and complex cells in the class Cristamonadea evolved by replicating a fundamental unit, the karyomastigont, in various ways. We describe here four new species of Calonymphidae (Cristamonadea) from Rugitermes hosts, assigned to the genus Snyderella based on diagnostic features (including the karyomastigont pattern) and molecular phylogeny. We also report a new genus of Calonymphidae, Daimonympha, from Rugitermes laticollis. Daimonympha's morphology does not match that of any known Parabasalia, and its SSU rRNA gene sequence corroborates this distinction. Daimonympha does however share a puzzling feature with a few previously described, but distantly related, Cristamonadea: a rapid, smooth, and continuous rotation of the anterior end of the cell, including the many karyomastigont nuclei. The function of this rotatory movement, the cellular mechanisms enabling it, and the way the cell deals with the consequent cell membrane shear, are all unknown. “Rotating wheel” structures are famously rare in biology, with prokaryotic flagella being the main exception; these mysterious spinning cells found only among Parabasalia are another, far less understood, example.
Funder
Natural Sciences and Engineering Research Council of Canada
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献