Affiliation:
1. School of Mechanical Engineering Xinjiang University Urumqi China
Abstract
AbstractA new algorithm optimization‐based hybrid neural network model is proposed in the present study for the multiaxial fatigue life prediction of various metallic materials. Firstly, a convolutional neural network (CNN) is applied to extract the in‐depth features from the loading sequence composed of the critical fatigue loading conditions. Meanwhile, the multiaxial historical loading information with time‐series features is retained. Then, a long short‐term memory (LSTM) network is adopted to capture the time‐series features and in‐depth features of the CNN output. Finally, a full connection layer is used to achieve dimensional transformation, which makes the fatigue life predictable. Herein, the hyperparameters of the LSTM network are automatically determined using the slime mold algorithm (SMA). The test results demonstrate that the proposed model has pleasant prediction performance and extrapolation capability, and it is suitable for the life prediction of various metallic materials under uniaxial, proportional multiaxial, nonproportional multiaxial loading conditions.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Xinjiang
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献