Multiaxial fatigue life prediction for various metallic materials based on the hybrid CNN‐LSTM neural network

Author:

Heng Fei1,Gao Jianxiong1ORCID,Xu Rongxia1,Yang Haojin1,Cheng Qin1,Liu Yuanyuan1

Affiliation:

1. School of Mechanical Engineering Xinjiang University Urumqi China

Abstract

AbstractA new algorithm optimization‐based hybrid neural network model is proposed in the present study for the multiaxial fatigue life prediction of various metallic materials. Firstly, a convolutional neural network (CNN) is applied to extract the in‐depth features from the loading sequence composed of the critical fatigue loading conditions. Meanwhile, the multiaxial historical loading information with time‐series features is retained. Then, a long short‐term memory (LSTM) network is adopted to capture the time‐series features and in‐depth features of the CNN output. Finally, a full connection layer is used to achieve dimensional transformation, which makes the fatigue life predictable. Herein, the hyperparameters of the LSTM network are automatically determined using the slime mold algorithm (SMA). The test results demonstrate that the proposed model has pleasant prediction performance and extrapolation capability, and it is suitable for the life prediction of various metallic materials under uniaxial, proportional multiaxial, nonproportional multiaxial loading conditions.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Xinjiang

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3