Potential of MnO2‐based composite and numerous morphological for enhancing supercapacitors performance

Author:

Diantoro Markus12ORCID,Istiqomah Istiqomah1,Fath Yusril Al1ORCID,Nasikhudin Nasikhudin12,Alias Yatimah3,Meevasana Worawat4

Affiliation:

1. Department of Physics Faculty of Mathematics and Natural Sciences Universitas Negeri Malang Malang Indonesia

2. Center of Advanced Materials for Renewable Energy (CAMRY) Universitas Negeri Malang Malang Indonesia

3. Department of Chemistry Faculty of Science University of Malaya Kuala Lumpur Malaysia

4. School of Physics, Institute of Science Suranaree University of Technology Nakhon Ratchasima Thailand

Abstract

AbstractThe development of materials and electrochemical energy storage (EES) technologies are currently taking the lead and showing excellent performance in the global effort to tackle the issues of sustainable energy supply. Supercapacitors have been widely studied among the EES technologies as they exhibit quick charging rates under high‐power conditions. Manganese dioxide (MnO2) has attracted renewed interest as a promising material due to its high theoretical capacitance and high energy density. However, the widespread application is immediately impacted by low conductivity. Hence, combining nanomaterials and various morphologies of MnO2 can improve the electrochemical performance of supercapacitors. This paper presents a review based on the composites of nanomaterials/MnO2 with various morphologies. Their mechanism and practical applications in supercapacitors are introduced in detail. Finally, the challenges and next steps in developing MnO2 electrode materials are proposed.

Publisher

Wiley

Subject

Materials Chemistry,Marketing,Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3