Cost‐effective suspension formulation for flexible TiB2 tapes

Author:

Shirey Kaitlyn123,Tallon Carolina123ORCID

Affiliation:

1. Department of Materials Science and Engineering Virginia Tech Blacksburg Virginia USA

2. Advanced Manufacturing Team Virginia Tech Blacksburg Virginia USA

3. Macromolecules Innovation Institute Virginia Tech Blacksburg Virginia USA

Abstract

AbstractThe manufacturing of ultra‐high temperature ceramic materials has significantly advanced over recent years, allowing for the development of new microstructures, architectures, shapes, and geometries to explore new properties and applications for these materials beyond aerospace. For example, titanium diboride (TiB2) exhibits high electrical and thermal conductivity that could satisfy the needs of battery applications by tailoring its geometry, microstructure, and architecture. In this work, aqueous tape casting of TiB2 has been investigated. Zeta potential measurements and suspension rheology were used to understand the role of dispersant, binder, and plasticizer in the suspension and their interaction with the surface chemistry of the TiB2 particles to develop a stable, homogenous suspension, with minimum additive amounts (0%–2 wt%). Homogeneous, flexible, and strong TiB2 tapes were prepared using suspensions with 30 vol% solids and characterized to compare different compositions, mixing methods, and thicknesses. The characterization shows the tailoring of the properties as a function of the controlled suspension formulation with a minimum amount of additives. Green tapes with 2 wt% dispersants, 1 wt% binder, and 2 wt% plasticizers had similar microstructure to those with half the plasticizer but quintuple Young's modulus (1.96 GPa). The effect on other relevant properties is also discussed.

Funder

Institute for Critical Technology and Applied Science

Publisher

Wiley

Subject

Materials Chemistry,Marketing,Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3