Effect of HfSi2‐induced intergranular liquid phase on densification behavior of ZrB2

Author:

Wei Zhifan1,Li Hongwei1,Chen Guoqing1ORCID,Zu Yufei2,Fu Xuesong1,Zhou Wenlong1

Affiliation:

1. Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province) School of Materials Science and Engineering, Dalian University of Technology Dalian P. R. China

2. Key Laboratory of Advanced Technology for Aerospace Vehicles (Liaoning Province) School of Aeronautics and Astronautics, Dalian University of Technology Dalian P. R. China

Abstract

AbstractThe densification behavior and mechanical properties of ZrB2‐based composites were investigated. The results demonstrated that the fully dense ZrB2‐based composites could be obtained at lower sintering temperature (1600°C) and pressure (30 MPa) when the content of HfSi2 was above 20 vol.%. The as‐sintered composite was a special core–shell structure, with ZrB2 as the core and (Zr, Hf)B2 solid solution as the shell. The core–shell structure resulted from the diffusion of Hf atom into the boride matrix, which could accelerate the densification. In addition, the intergranular liquid phase induced by the HfSi2 addition filled the micropores of the composites effectively during the sintering. When the content of HfSi2 increased to 20 vol.%, its compressive strength, hardness, and fracture toughness all reached the maximum values, which were 1617 MPa, 15.99 GPa, and 2.44 MPa m1/2, respectively.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Marketing,Condensed Matter Physics,Ceramics and Composites

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3