Ants and predators cope with pest pressures by interacting with the surrounding vegetation at low spatial scales

Author:

Álvarez Hugo Alejandro12ORCID,Clemente‐Orta Gemma3ORCID,Ruano Francisca2ORCID

Affiliation:

1. Department of Biogeography and Global Change CSIC–National Museum of Natural Sciences Madrid Spain

2. Department of Zoology University of Granada Granada Spain

3. Department of Crop and Forest Sciences, AGROTECNIO Center University of Lleida Lleida Spain

Abstract

AbstractBiological control of pests can be enhanced by the presence of semi‐natural habitats within agricultural landscapes. However, this assumption remains controversial due to inconsistencies related to the type of agroecosystems and the natural enemies studied. Within olive orchards, there is a lack of information regarding the interaction among natural enemies and their relation with habitat structure to control pests at the landscape scale. Here, we investigate the effects of the natural habitat on the pest, pest damage and the interaction of pests and natural enemies – using a trophic guild approach, in organic olive orchards. For this, we decomposed the natural habitats into vegetation structures and analysed their effects with a multi‐scale perspective. Our results show that (1) greater proportions of natural habitats increase the abundance of ants (omnivores) and predators and diminish pest pressures – reducing the impact of Prays oleae on olive fruits. (2) Vegetation structures within natural habitats were grouped, based on their effects, into three main vegetation groups: grassland and forest, scrublands and olive trees. However, the dense scrubland and the dense forest improve the abundance of natural enemies that are linked to pest damage the most. (3) Prays oleae increases in landscapes dominated by low numbers of patches that are highly aggregated. Conversely, ants and predators increased in landscapes dominated by high numbers of patches that have a less edge‐resembling shape. (4) Within the olive canopy, the abundance of lacewing larvae and salticid spiders is related to lower pest damage and a reduction in P. oleae adults respectively. However, when ants and predators interact with the natural habitat, they can cope with pest pressures without the need for high abundances, supporting ‘the more‐effective natural enemy hypothesis’ in agroecosystems.

Publisher

Wiley

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3