The genetic legacy of the first successful reintroduction of a mammal to Britain: Founder events and attempted genetic rescue in Scotland's beaver population

Author:

Taylor Helen R.1ORCID,Costanzi Jean‐Marc23,Dicks Kara L.2ORCID,Senn Helen V.12ORCID,Robinson Sarah4,Dowse Gill4,Ball Alex D.2ORCID

Affiliation:

1. Field Conservation Royal Zoological Society of Scotland Edinburgh UK

2. WildGenes Laboratory Royal Zoological Society of Scotland Edinburgh UK

3. Microbiology and Infection Control Akershus University Hospital Oslo Norway

4. Scottish Wildlife Trust Edinburgh UK

Abstract

AbstractConservation translocations often inherently involve a risk of genetic diversity loss, and thus loss of adaptive potential, but this risk is rarely quantified or monitored through time. The reintroduction of beavers to Scotland, via the Scottish Beaver Trial in Knapdale, is an example of a translocation that took place in the absence of genetic data for the founder individuals and resulted in a small and suspected to be genetically depauperate population. In this study we use a high‐density SNP panel to assess the genetic impact of that initial translocation and the effect of subsequent reinforcement translocations using animals from a different genetic source to the original founders. We demonstrate that the initial translocation did, indeed, lead to low genetic diversity (Ho = 0.052) and high mean kinship (KING‐robust = 0.159) in the Knapdale population compared to other beaver populations. We also show that the reinforcement translocations have succeeded in increasing genetic diversity (Ho = 0.196) and reducing kinship (KING robust = 0.028) in Knapdale. As yet, there is no evidence of admixture between the two genetic lineages that are now present in Knapdale and such admixture is necessary to realise the full genetic benefits of the reinforcement and for genetic reinforcement and then rescue to occur; future genetic monitoring will be required to assess whether this has happened. We note that, should admixture occur, the Knapdale population will harbour combinations of genetic diversity not currently seen elsewhere in Eurasian beavers, posing important considerations for the future management of this population. We consider our results in the wider context of beaver conservation throughout Scotland and the rest of Britain, and advocate for more proactive genetic sampling of all founders to allow the full integration of genetic data into translocation planning in general.

Publisher

Wiley

Subject

General Agricultural and Biological Sciences,Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3