Strong heterologous electron sink outcompetes alternative electron transport pathways in photosynthesis

Author:

Hubáček Michal1ORCID,Wey Laura T.1ORCID,Kourist Robert2ORCID,Malihan‐Yap Lenny2ORCID,Nikkanen Lauri1ORCID,Allahverdiyeva Yagut1ORCID

Affiliation:

1. Molecular Plant Biology, Department of Life Technologies University of Turku Turku 20014 Finland

2. Institute of Molecular Biotechnology, NAWI Graz, BioTechMed Graz University of Technology Graz 8010 Austria

Abstract

SUMMARYImprovement of photosynthesis requires a thorough understanding of electron partitioning under both natural and strong electron sink conditions. We applied a wide array of state‐of‐the‐art biophysical and biochemical techniques to thoroughly investigate the fate of photosynthetic electrons in the engineered cyanobacterium Synechocystis sp. PCC 6803, a blueprint for photosynthetic biotechnology, expressing the heterologous gene for ene‐reductase, YqjM. This recombinant enzyme catalyses the reduction of an exogenously added substrate into the desired product by utilising photosynthetically produced NAD(P)H, enabling whole‐cell biotransformation. Through coupling the biotransformation reaction with biophysical measurements, we demonstrated that the strong artificial electron sink, outcompetes the natural electron valves, the flavodiiron protein‐driven Mehler‐like reaction and cyclic electron transport. These results show that ferredoxin‐NAD(P)H‐oxidoreductase is the preferred route for delivering photosynthetic electrons from reduced ferredoxin and the cellular NADPH/NADP+ ratio as a key factor in orchestrating photosynthetic electron flux. These insights are crucial for understanding molecular mechanisms of photosynthetic electron transport and harnessing photosynthesis for sustainable bioproduction by engineering the cellular source/sink balance. Furthermore, we conclude that identifying the bioenergetic bottleneck of a heterologous electron sink is a crucial prerequisite for targeted engineering of photosynthetic biotransformation platforms.

Funder

European Commission

Academy of Finland

Novo Nordisk Fonden

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3