3D modeling of deep borehole electromagnetic measurements with energized casing source for fracture mapping at the Utah Frontier Observatory for Research in Geothermal Energy

Author:

Um Evan Schankee1,Alumbaugh David1,Capriotti Joseph2,Wilt Michael1,Nichols Edward1,Li Yaoguo2,Kang Seogi3,Osato Kazumi4

Affiliation:

1. Earth and Environmental Sciences Lawrence Berkeley National Laboratory Berkeley California USA

2. Department of Geophysics Colorado School of Mines Golden Colorado USA

3. Department of Geophysics Stanford University Stanford California USA

4. Geothermal Energy Research and Development Co. Ltd Tokyo Japan

Abstract

AbstractWe present a 3D numerical modelling analysis evaluating the deployment of a borehole electromagnetic measurement tool to detect and image a stimulated zone at the Utah Frontier Observatory for Research in Geothermal Energy geothermal site. As the depth to the geothermal reservoir is several kilometres and the size of the stimulated zone is limited to several 100 m, surface‐based controlled‐source electromagnetic measurements lack the sensitivity for detecting changes in electrical resistivity caused by the stimulation. To overcome the limitation, the study evaluates the feasibility of using a three‐component borehole magnetic receiver system at the Frontier Observatory for Research in Geothermal Energy site. To provide sufficient currents inside and around the enhanced geothermal reservoir, we use an injection well as an energized casing source. To efficiently simulate energizing the injection well in a realistic 3D resistivity model, we introduce a novel modelling workflow that leverages the strengths of both 3D cylindrical‐mesh‐based electromagnetic modelling code and 3D tetrahedral‐mesh‐based electromagnetic modelling code. The former is particularly well‐suited for modelling hollow cylindrical objects like casings, whereas the latter excels at representing more complex 3D geological structures. In this workflow, our initial step involves computing current densities along a vertical steel‐cased well using a 3D cylindrical electromagnetic modelling code. Subsequently, we distribute a series of equivalent current sources along the well's trajectory within a complex 3D resistivity model. We then discretize this model using a tetrahedral mesh and simulate the borehole electromagnetic responses excited by the casing source using a 3D finite‐element electromagnetic code. This multi‐step approach enables us to simulate 3D casing source electromagnetic responses within a complex 3D resistivity model, without the need for explicit discretization of the well using an excessive number of fine cells. We discuss the applicability and limitations of this proposed workflow within an electromagnetic modelling scenario where an energized well is deviated, such as at the Frontier Observatory for Research in Geothermal Energy site. Using the workflow, we demonstrate that the combined use of the energized casing source and the borehole electromagnetic receiver system offer measurable magnetic field amplitudes and sensitivity to the deep localized stimulated zone. The measurements can also distinguish between parallel‐fracture anisotropic reservoirs and isotropic cases, providing valuable insights into the fracture system of the stimulated zone. Besides the magnetic field measurements, vertical electric field measurements in the open well sections are also highly sensitive to the stimulated zone and can be used as additional data for detecting and imaging the target. We can also acquire additional multiple‐source data by grounding the surface electrode at various locations and repeating borehole electromagnetic measurements. This approach can increase the number of monitoring data by several factors, providing a more comprehensive dataset for analysing the deep‐localized stimulated zone. The numerical analysis indicates that it is feasible to use the combination of the energized casing and downhole electromagnetic measurements in monitoring localized stimulated zone at large depths.

Publisher

Wiley

Reference54 articles.

1. Alumbaugh D. Um E. Wilt W. Nichols E.&Osato K.(2023)Deep borehole EM deployment for fracture mapping at the FORGE geothermal site. In:Proceedings of the 48th Workshop on Geothermal Reservoir Engineering 2023 Stanford California.Stanford University.

2. The effects of well damage and completion designs on geoelectrical responses in mature wellbore environments

3. Modelling electrical conductivity for earth media with macroscopic fluid-filled fractures

4. Assessment of the Enhanced Geothermal System Resource Base of the United States

5. Boitnott G.N.&Kirkpatrick A.(1997)Interpretation of field seismic tomography at the Geysers geothermal field California. In:Proceedings of the 22nd Workshop on Geothermal Reservoir Engineering.Stanford Stanford University. pp.391–398.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3