Experimental study of geophysical and transport properties of salt rocks in the context of underground energy storage

Author:

Falcon‐Suarez Ismael Himar1ORCID,Dale Michael12,Marin‐Moreno Hector2ORCID

Affiliation:

1. Ocean Biogeosciences Research Group National Oceanography Centre Southampton UK

2. School of Ocean and Earth Science University of Southampton Southampton UK

Abstract

AbstractArtificial caverns in salt rock formations play an important role in the net‐zero energy transition challenge, both for covering short‐term fluctuations in energy demand and serving as safe locations for long‐term underground gas storage both for hydrogen and natural gas. Geophysical tools can serve for monitoring geomechanical changes in the salt cavern during selection and development, and during gas storage/extraction activities, but the use of common geophysical monitoring techniques has been very limited in this area. Here, we present experimental work on physical and transport properties of halite rocks within the energy storage context and assess the potential of seismic and electromagnetic data to monitor gas storage activities in salt formations. First, we analysed the stress‐dependency of the elastic and transport properties of five halite rocks to improve our understanding on changes in the geological system during gas storage operations. Second, we conducted two dissolution tests, using cracked and intact halite samples, monitored with seismic (ultrasonic P‐ and S‐waves velocities and their attenuation factors) and electromagnetic (electrical resistivity) sources to evaluate (i) the use of these common geophysical sensing methods to remotely interpret caverning development and (ii) the effect of structural discontinuities on rock salt dissolution. Elastic properties and permeability showed an increasing trend towards rock sealing and mechanical enhancement with increasing pressure for permeabilities above 10−21 m2, with strong linear correlations up to 20 MPa. In the dissolution tests, the ultrasonic waves and electrical resistivity showed that the presence of small structural discontinuities largely impacts the dissolution patterns. Our results indicate that seismic and electromagnetic methods might help in the selection and monitoring of the caverning process and gas storage operations, contributing to the expected increase in demand of large‐scale underground hydrogen storage.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3