High‐density offshore seismic exploration with an optical fibre towed streamer based on distributed acoustic sensing: Concept and application

Author:

Liu Bin12,Jiang Wenbin12ORCID,He Xiangge3,Wen Pengfei12,Zhang Min3

Affiliation:

1. Guangzhou Marine Geological Survey Guangzhou China

2. National Engineering Research Center for Gas Hydrate Exploration and Development Guangzhou China

3. Beijing International Center for Gas Hydrate, School of Earth and Space Sciences Peking University Beijing China

Abstract

AbstractSeismic technique is widely used to image the subsurface geology for oil and gas exploration. The image quality depends on the spatial sampling density. However, it is challenging and expensive to acquire high‐density seismic data, particularly in the marine environment. Distributed acoustic sensing data are increasingly used in data acquisition because of their low cost and dense spatial sampling. Here, we present a novel type of high‐density towed streamer based on distributed acoustic sensing technology and report the results of a sea trial. This sea trial was conducted in a gas hydrate province as the major driver to develop this technique is to better characterize gas hydrate deposits. Throughout the experiment, several high‐quality datasets were obtained, and parameters like source energies and filler materials were examined. The trace interval of distributed acoustic sensing streamer data reaches 1 m, which is a significant improvement over the usual 3.125 or 6.25 m in the conventional towed streamer. A detailed analysis was carried out from three different perspectives: amplitude, noise and frequency. One of the datasets was further processed following a routine workflow to obtain the final image. Though direct comparison with the image obtained by a conventional towed streamer along a coincident line is not available, the comparison with the previous image from a nearby line shows the improvement in resolution. The final image is of good quality and the presence of gas hydrate could be inferred. The sea trial results demonstrate the feasibility of the use of a distributed acoustic sensing optical fibre streamer in acquiring high‐density seismic data in the marine environment.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3