Diving waves in acoustic factorized orthorhombic media

Author:

Galtung Kristoffer Tesdal12ORCID,Stovas Alexey12ORCID

Affiliation:

1. Department of Geoscience and Petroleum Norwegian University of Science and Technology Trondheim Norway

2. Centre for Geophysical Forecasting Norwegian University of Science and Technology Trondheim Norway

Abstract

AbstractDiving waves propagating in the subsurface are massive sources of low‐frequency information that can be used to constrain the kinematic component of the velocity model. Compared to reflected waves, less is known about the behaviour of diving waves, especially in the presence of azimuthal anisotropy. Anisotropy is needed to place the events to the correct depths and match travel times in synthetics with recorded data. Obtaining more insights into the influence of anisotropy on diving wave propagation can help to find parameters with a low trade‐off for inversion. Here, we derive equations for diving qP‐waves in an acoustic factorized anisotropic model with orthorhombic anisotropy. The effects of the anisotropic parameters in the acoustic factorized orthorhombic model are tested by perturbing , , , and and observing differences in the ray paths, the effective vertical slowness and the relative geometrical spreading. The properties of diving waves in this model are also compared with those in an acoustic isotropic model and acoustic factorized anisotropic models with elliptical‐ and vertical transverse isotropic anisotropy. From our analysis, we found that perturbing and has the most significant influence on these characteristics. The , and parameters were shown to induce minor changes. Compared with the other models, the acoustic factorized orthorhombic model had the most in common with the acoustic factorized anisotropic model with elliptical anisotropy. Although, in general, none of the other models could fully represent the effects of orthorhombic anisotropy.

Funder

Norges Forskningsråd

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3