A novel approach for water reservoir mapping using controlled source audio‐frequency magnetotelluric in Xingning area, Hunan Province, China

Author:

Kouadio Kouao Laurent123,Liu Rong12,Malory Albert Okrah4,Liu Wenxiang15,Liu Chunming12ORCID

Affiliation:

1. School of Geosciences and Info‐Physics, Central South University Changsha Hunan China

2. Hunan Key Laboratory of Nonferrous Resources and Geological Hazards Exploration Changsha Hunan China

3. UFR des Sciences de la Terre et des Ressources Minières Université Félix Houphouët‐Boigny Abidjan Cote d'Ivoire

4. Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province School of Earth Sciences Zhejiang University Hangzhou Zhejiang China

5. Guangdong Geological Bureau Guangzhou Guangdong China

Abstract

AbstractControlled source audio‐frequency magnetotelluric is frequently used in association with other geophysical methods, especially in complex geological areas to highlight geological structures such as water reservoir rock. Although it gives satisfactory results, combining several methods requires time and expense. In addition, despite this combination, several drilling locations proposed after geophysical investigations were inaccurate, resulting in many unsuccessful drillings. The latter occurs due to the difficulty to emphasize the fracture zones properly. To work around this problem, we proposed a novel approach called pseudostratigraphic to reduce the repercussion of unsuccessful drilled boreholes and to demarcate the water reservoir rock. The technique consists to discretize the resistivity of the inverted OCCAM2D model based on the true layer resistivities collected from the borehole log data (observed layers). The discrete resistivity model is known as the new resistivity model. It is used to generate the pseudostratigraphic log at each station by pseudo‐demarcating the thicknesses of the observed layers with a low margin of error. Moreover, the combination of multiple new resistivity models from different survey lines creates a three‐dimensional pseudostratigraphic map useful to emphasize the water reservoir rock. The pseudostratigraphic implementation is carried out in the Xingning area as a real‐world case study. The results show that the intersection of the main fault (F1) and the conductive zones (≤100 Ω m) indicates the potential water reservoir rock. Its thickness is estimated around 150–600 with an error equal to ± 7°m. Based on the three‐dimensional pseudostratigraphic map, the water found in the fracture zone located under the reservoir rock is considered much hotter due to the intense geothermal activity along F1, thereby making it a better place for hot water exploitation. Finally, the pseudostratigraphic technique could be an innovative and cheap strategy to find groundwater reservoirs in complex geological areas.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3