Deblending and interpolation of subsampled blended seismic data based on damped randomized singular spectrum analysis

Author:

Li Zhuowei1,Mo Tongtong1,Song Jiawen2,Wang Benfeng1ORCID

Affiliation:

1. State Key Laboratory of Marine Geology Tongji University Shanghai China

2. BGP Inc., CNPC Research and Development Center Zhuozhou China

Abstract

AbstractWhen compared to traditional seismic data acquisition, irregular blended acquisition significantly promotes the acquisition efficiency. Yet, the blending noise of subsampled blended data introduces new obstacles for the subsequent processing of seismic data. Due to the predictability of linear events in the frequency–space domain, the constructed Hankel matrices exhibit low‐rank characteristics. However, the blending noise of subsampled blended data increases the rank, so deblending and interpolation can be implemented via rank‐reduction algorithms such as the singular spectrum analysis. The significant computing cost of the singular value decomposition, however, makes the traditional singular spectrum analysis inefficient. An alternative algorithm, known as the randomized singular spectrum analysis, employs the randomized singular value decomposition instead of the traditional singular value decomposition for rank‐reduction. The randomized singular spectrum analysis significantly enhances the efficiency of the decomposition process, particularly when dealing with large Hankel matrices. There still remains some random noise when using the singular spectrum analysis or randomized singular spectrum analysis for subsampled blended data, because the noise subspace and signal subspace are coupled together. Thus, we incorporate a damping operator into the randomized singular value decomposition and propose a novel damped randomized singular spectrum analysis method. The damped randomized singular spectrum analysis combines the advantages of the randomized singular value decomposition and the damping operator to enhance the computational efficiency and suppress the remaining noise. Moreover, an iterative projected gradient descent strategy is introduced to achieve deblended and interpolated seismic data for subsequent processing. Examples from synthetic data and field data are used to demonstrate the effectiveness and superiority of the proposed damped randomized singular spectrum analysis method, which enhances the accuracy and efficiency during simultaneous deblending and interpolation.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fault Diagnosis of Wind Turbine Rolling Bearings Based on DCS-EEMD-SSA;Journal of Failure Analysis and Prevention;2024-08-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3