Intelligent optimal demand response implemented by blockchain and cooperative game in microgrids

Author:

Bai Fenhua1ORCID,Zhang Chi1,Zhang Xiaohui1

Affiliation:

1. Faculty of Information Engineering and Automation Kunming University of Science and Technology Kunming 650500 China

Abstract

AbstractDistributed renewable energy supply (RES) is a new pattern for the transformation of power grids. As a characteristic case of RES, microgrids have an advantage in convenient operation. However, the energy management of microgrids remains as a major concern. With the emergence of the decentralized paradigm, blockchain potentially provides a reliable energy data metering and payment for the whole life cycle of energy management. In particular, the demand response (DR) in the microgrid can stimulate demanders to spontaneously manage their load consumption and maintain the balance of the energy trading market. To achieve optimal DR, a dynamic pricing strategy under the blockchain and game‐theoretic approach is proposed. First, the blockchain‐based architecture is applied to ensure the reliability of energy data and lay a foundation of binding agreements for games. Then, the pricing mechanism under the cooperative game is formulated to optimize DR. Moreover, to help resolve the optimal response quantity and reduce the supply punishment of the RES providers, the DR requires accurate forecasting of the energy generation and consumption profiles. Therefore, an ensemble method Long Short‐Term Gate Support (LSTGS) is designed to forecast the RES and load power for intelligent agent to make decision on effective energy scheduling and DR. Taking the classic distributed energy context as a case study, we demonstrate the effectiveness of our approach and show that it can achieve DR profits maximized and improve the stability of the energy‐trading market.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Management of Technology and Innovation,Management Science and Operations Research,Strategy and Management,Computer Science Applications,Business and International Management

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3