Solving a multiobjective professional timetabling problem using evolutionary algorithms at Mandarine Academy

Author:

Hafsa Mounir12ORCID,Wattebled Pamela1,Jacques Julie2,Jourdan Laetitia2

Affiliation:

1. Mandarine Academy Lille 59000 France

2. Université de Lille CNRS, Centrale Lille UMR 9189 ‐ CRIStAL F‐59000 Lille France

Abstract

AbstractIn this paper, we propose a method for solving a real‐world timetabling problem at Mandarine Academy. The primary motivation for this work is to provide an automated professional course scheduling tool to replace the time‐consuming task of manually creating timetables that are constantly incorrect. Following a review of both scientific literature and company requirements, a mathematical model of the problem is provided, which includes 18 constraints (hard/soft) and five objectives, two of which are competing. We test a handful of multi‐objective evolutionary algorithms (MOEA's) starting with the non‐dominated sorting genetic algorithm (NSGA II and NSGA III), the multi‐objective evolutionary algorithm based on decomposition (MOEA/D), the indicator‐based evolutionary algorithm and finally the strength Pareto evolutionary algorithm . Two custom genetic operators (mutation and crossover) are proposed and compared to conventional operators (PMX and swap mutation). To obtain elite configurations, a tuning phase involving all of the aforementioned algorithms is carried out. Experiments were divided by problem size, with three to five objectives tested. Experiments include the use of real‐world data from the company's catalog. This dataset was made available to the scientific community to serve as a testing ground for professional course scheduling, an underexploited field of scheduling. We discuss findings, including a comparison of each algorithm's performance using various metrics, as well as convergence graphs and population evolution.

Publisher

Wiley

Subject

Management of Technology and Innovation,Management Science and Operations Research,Strategy and Management,Computer Science Applications,Business and International Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3