New insights into the positive temperature coefficient of resistance model of BaTiO3‐based ceramics

Author:

Fang Tsang‐Tse1ORCID

Affiliation:

1. Department of Materials Science and Engineering National Cheng Kung University Tainan Taiwan

Abstract

AbstractThe speculation concerning the presence of interfacial states in the BaTiO3‐based positive temperature coefficient of resistance (PTCR) model originating from the formation of the grain boundary barrier in semiconductor is argued to be unsuitable. This communication provides new insights into the formation of the grain boundary barrier without the grain boundary phase of the BaTiO3‐based PTCR model. New insights into the temperature and voltage dependences of the resistance or resistivity with and without grain boundary phase of the BaTiO3‐based PTCR model are proposed. Concerning the absence of the grain boundary phase, two new plausible models are proposed: the net dipolar polarization field due to the applied voltage and effective permittivity owing to the net dipole charges accumulated near the grain boundary. As for the presence of the grain boundary phase, a new thinking concerning the field emission tunneling with the conduction band conduction mechanism for the occurrence of low resistance at low applied voltage is posited.

Publisher

Wiley

Subject

Materials Chemistry,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3