Affiliation:
1. Department of Materials Science and Engineering University of Maryland College Park Maryland USA
2. Institute for Research in Electronics and Applied Physics University of Maryland College Park Maryland USA
3. Department of Physics Quantum Materials Center University of Maryland College Park Maryland USA
Abstract
AbstractChalcogenide phase change materials (PCMs) have become one of the most promising material platforms for the Optics and Photonics community. The unparalleled combination of nonvolatility and large optical property modulation promises devices with low‐energy consumption and ultra‐compact form factors. At the core of all these applications lies the difficult task of precisely controlling the glassy amorphous and crystalline domains that compose the PCM microstructure and dictate the optical response. A spatially controllable glassy‐crystalline domain distribution is desired for intermediate optical response (vs. binary response between fully amorphous and crystalline states), and temporally resolved domains are sought after for repeatable reconfiguration. In this perspective, we briefly review the fundamentals of PCM phase transition in various reconfiguring approaches for optical devices. We discuss each method's underpinning mechanisms, design, advantages, and downsides. Finally, we lay out current challenges and future directions in this field.
Funder
Division of Electrical, Communications and Cyber Systems
Multidisciplinary University Research Initiative
Division of Materials Research
Subject
Materials Chemistry,Ceramics and Composites
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. 基于硫基相变材料的存内计算器件与集成芯片(特邀);Acta Optica Sinica;2024