Preparation and enhanced mechanical properties of novel Al2O3‐C ceramic filter reinforced by microporous powder and SiC whiskers

Author:

Yan Wen1ORCID,Chen Zhe1ORCID,Li Guangqiang1,Hong Shaosong2,Li Nan1

Affiliation:

1. The State Key Laboratory of Refractories and Metallurgy Wuhan University of Science and Technology Wuhan China

2. Jiangsu Shengnai New Materials Co Ltd Taizhou China

Abstract

AbstractIn present work, the novel Al2O3‐C ceramic filter fabricated by using microporous corundum‐spinel powder instead of dense Al2O3 powder and reinforced by SiC whiskers is proposed. The effects of Si powder content (0, 3, 6, and 9 wt. %) on the microstructures and mechanical properties of the filters were studied. After replacing the α‐Al2O3 micro‐powder with microporous corundum‐spinel powder, the in situ spinel whiskers were formed inside the filter skeleton under the reducing atmosphere. The rough surface structure of the microporous powder increased the interface contact area with the small‐sized carbon particles, resulting in a compact interface bonding in the filter skeleton and a higher cold compressive strength of the filter. When the Si powder content increased to 6–9 wt. %, the in‐situ SiC whiskers were formed not only between the microporous powder, but also inside the pores near the surface of it by vapor‐solid reaction mechanism in the filter skeleton. The SiC whiskers synergized with the microporous powder to form a more compact interface structure, thus remarkably enhancing their cold compressive strength and thermal shock resistance. Overall, the mechanical properties of the filters were significantly improved by the addition of 9 wt. % Si powder. The filter skeleton had an apparent porosity of 36.2% and a bulk density of 1.93 g/cm3. The filter also exhibited a high cold compressive strength of 1.59 MPa and a superior thermal shock resistance. It has the potential for better purification efficiency on molten steel in the future due to a rougher skeleton surface structure compared to existing Al2O3‐C filters.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3