Experimental and numerical analysis of strength and deformation of large‐scale steel‐composite adhesive joints subjected to fatigue followed by static loading

Author:

Jaiswal Pankaj R.1ORCID,Kumar Rahul Iyer1,Bormann Franz2,Juwet Thibault3,Luyckx Geert3,Mouton Luc4,Verhaeghe Cedric5,De Waele Wim1ORCID

Affiliation:

1. Soete Laboratory, Department of Electromechanical, Systems and Metal Engineering (EMSME) Ghent University Ghent Belgium

2. Material innovation institute (M2i) Delft The Netherlands

3. Com&Sens bvba Nazareth Belgium

4. Composite Material Section Bureau Veritas Marine & Offshore Pessac France

5. Damen Schelde Naval Shipbuilding Vlissingen The Netherlands

Abstract

AbstractThis work reports a study of the fatigue behaviour and quasi‐static strength of full‐scale adhesively bonded steel‐composite joints. Three joints with an approximately 10‐mm‐thick layer of methyl methacrylate adhesive were manufactured in dockyard conditions. One specimen was tensile tested till failure, while two specimens were subjected to ~3.5 million fatigue cycles, followed by a residual tensile test supported with digital image correlation. The shear, longitudinal and peel strain values within the adhesive bondlines are significantly higher at the gripped sides due to the asymmetrical design of the steel brackets. All specimens showed a significantly higher shear strength than the design values defined by the shipbuilder. Fibre Bragg sensors monitored strains at steel and composite constituents and allowed to detect damage onset and evolution in tensile tested specimens. A finite element model of the joint was developed with material and interface properties based on dedicated small‐scale experiments. The simulation results of strains during a static load test corresponded closely to the DIC measurements. All specimens failed near the composite‐adhesive interface due to delamination of the composite panel.

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3