Optical‐physical and inkjet printing properties of created hybrid CaCO3 coated papers

Author:

Yilmaz Ufuk1

Affiliation:

1. Forest Industrial Engineering Kahramanmaras Sutcu Imam University Kahramanmaras Turkiye

Abstract

AbstractThe aim of this study is to examine the role of different formulations of calcium carbonates on the inkjet printing quality, with the use of cationic carboxymethyl cellulose (CMC)‐starch as a binder in the formation of the coating structure of paper to use for inkjet printing. For this, GCC (ground calcium carbonate), PCC (precipitated calcium carbonate) and ECC (eggshell calcium carbonate), which have been tried as new coating materials in recent years, are mixed in different proportions to form a different coated formulation and plastered on the newly produced paper surface. Then, optical and physical tests of the obtained samples are carried out. Then, printing properties of the papers on which drop‐on‐demand system inkjet printing is made are examined. According to the obtained data, it is determined that the optical properties of coated paper with GCC + PCC blends outperformed papers coated with other blends. According to the physical test results, GCC + PCC blended coated papers showed the best performance in breaking length and tear indices. ECC + PCC blended coated papers however showed the best performance in burst indices. It is determined that as the particle size of the calcium carbonates in the coating materials decreased, the burst indices value also decreased. This situation is the opposite for breaking length and tear indices values. When the inkjet printing features are examined, it is seen that the best results are obtained from GCC + ECC coated papers in general. The most optimal metamerism indices results, measured under three different light sources, are obtained on GCC + PCC coated papers.

Publisher

Wiley

Subject

Materials Science (miscellaneous),General Chemical Engineering,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3