Preclinical evaluation of the fluid dynamics and hemocompatibility of the Corheart 6 left ventricular assist device

Author:

Fang Peng1ORCID,Yang Yuzhuo2ORCID,Wei Xufeng3,Yu Shunzhou2ORCID

Affiliation:

1. School of Mechanical Engineering and Automation Harbin Institute of Technology Shenzhen China

2. Shenzhen Core Medical Technology Co, Ltd Shenzhen China

3. Department of Cardiac Surgery Wuxi Mingci Cardiovascular Hospital Wuxi China

Abstract

AbstractBackgroundCorheart 6 (Corheart) is a newly developed magnetically levitated continuous‐flow left ventricular assist device currently undergoing multicenter clinical trials in China. Featuring a small size, minimal weight, and low power consumption, the Corheart aims to improve pump hemocompatibility, reduce adverse events, and enhance the quality of life of heart failure patients.MethodsComputational simulations assessed flow field, shear stress, and washout, while in vitro and in vivo experiments were performed to further demonstrate hemocompatibility.ResultsNumerical results show that the flow path in the Corheart blood pump is well designed. There is no significantly high shear stress in the majority of the flow domain. Short secondary flow paths and small pump size (small priming volume) provide good washing (0.049 and 0.165 s to remove 55% and 95% old blood, respectively), allowing low hemolysis levels both in computational and in vitro hemolysis tests (in vitro hemolysis index ranges from 0.00092 ± 0.00006 g/100 L to 0.00134 ± 0.00019 g/100 L). Good hemocompatibility was further evidenced by ten 60‐day sheep implants tested with relatively low flow rates of 2.0 ± 0.2 L/min; the results showed no hemolysis or thrombosis.ConclusionsNumerical and experimental results shed light on the fluid dynamics characteristics and hemocompatibility of the Corheart. It is believed that the Corheart will provide more promising possibilities for minimally invasive implantation techniques and for those patients with a small body surface area.

Publisher

Wiley

Subject

Biomedical Engineering,General Medicine,Biomaterials,Medicine (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3